Loading...
Differences in working memory coding of biological motion attributed to oneself and others
Title / Series / Name
Human Brain Mapping
Publication Volume
43
Publication Issue
12
Pages
Editors
Keywords
Biological motion
Body representation
Mirror neurons
Self-other
Self-representation
Working memory
MVPA
Body representation
Mirror neurons
Self-other
Self-representation
Working memory
MVPA
URI
http://hdl.handle.net/20.500.14018/14199
Abstract
The question how the brain distinguishes between information about self and others is of fundamental interest to both philosophy and neuroscience. In this functional magnetic resonance imaging (fMRI) study, we sought to distinguish the neural substrates of representing a full-body movement as one's movement and as someone else's movement. Participants performed a delayed match-to-sample working memory task where a retained full-body movement (displayed using point-light walkers) was arbitrarily labeled as one's own movement or as performed by someone else. By using arbitrary associations we aimed to address a limitation of previous studies, namely that our own movements are more familiar to us than movements of other people. A searchlight multivariate decoding analysis was used to test where information about types of movement and about self-association was coded. Movement specific activation patterns were found in a network of regions also involved in perceptual processing of movement stimuli, however not in early sensory regions. Information about whether a memorized movement was associated with the self or with another person was found to be coded by activity in the left middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), bilateral supplementary motor area, and (at reduced threshold) in the left temporoparietal junction (TPJ). These areas are frequently reported as involved in action understanding (IFG, MFG) and domain-general self/other distinction (TPJ). Finally, in univariate analysis we found that selecting a self-associated movement for retention was related to increased activity in the ventral medial prefrontal cortex.
Topic
Publisher
Place of Publication
Type
Journal article
Date
2022
Language
ISBN
Identifiers
10.1002/hbm.25879