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SUMMARY

Recent breakthroughs in artificial intelligence (AI) have enabled machines to plan in tasks previously thought
to be uniquely human. Meanwhile, the planning algorithms implemented by the brain itself remain largely un-
known. Here, we review neural and behavioral data in sequential decision-making tasks that elucidate the
ways in which the brain does—and does not—plan. To systematically review available biological data, we
create a taxonomy of planning algorithms by summarizing the relevant design choices for such algorithms
in AI. Across species, recording techniques, and task paradigms, we find converging evidence that the brain
represents future states consistent with a class of planning algorithms within our taxonomy—focused, depth-
limited, and serial. However, we argue that current data are insufficient for addressing more detailed algo-
rithmic questions. We propose a new approach leveraging AI advances to drive experiments that can adju-
dicate between competing candidate algorithms.
INTRODUCTION

Life is full of choices: from the barely noticeable, such as select-

ing the right muscle contractions to reach for a glass, through

the mundane, such as picking the best wine for an occasion,

to the momentous, such as choosing a partner for life. Making

all those choices is difficult because their consequences tend

to only pan out over time, often well after we have made the

choice. Thus, the result of any one choice will typically depend

on a whole sequence of choices we have made on the way:

a sequence of motor commands for grasping the glass; a

sequence of turns for navigating to the wine shop; and a

sequence of decisions between going on a date and proposing

to get married. Despite the challenges of sequential decision

making, humans and other animals are often able to perform

impressively well in such tasks. How we achieve this perfor-

mance, however, is poorly understood.

A common approach for making sequential decisions is by

‘‘planning,’’ a process that considers actions and their sequential

interdependence in terms of the desirability of their outcomes.

By forecasting the long-term consequences of candidate ac-

tions, planning allows agents to flexibly adapt their behavior in

response to changes both in the environment and in their goals.

For this reason, planning is a fundamental component of intelli-

gent behavior in both biological and artificial agents. However,

in practice, there is a price to pay: planning exactly and exhaus-

tively for all eventualities may require vast resources (time, mem-

ory, computational power; see curse of dimensionality; Bellman,

1957a). Thus, the key question is: how to perform planning effi-

ciently under realistic resource limitations without making undue

sacrifices on performance and flexibility—for the brain must be

using such efficient planning strategies.
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Although planning has been a classical subject of investigation

in psychology, it remains one of the most elusive cognitive pro-

cesses at the neural level. A main factor limiting progress has

been the relatively impoverished nature of tasks typically used

to study the neuroscience of decision making. Those tasks often

focus on only a single step of decision, unlike the tasks we typi-

cally encounter in our lives, which are, instead, sequential in na-

ture. Of course, the simplicity of single-step tasks has the advan-

tage of greater tractability. Indeed, in single-step tasks, planning

amounts to the selection of a single action in terms of the desir-

ability of its immediate outcome. Leveraging this simplicity, neu-

roscientists have been able to dissociate the neural bases of

planned (goal-directed) versus reflexive (habitual) behavior (Bal-

leine and Dickinson, 1998). Single-step tasks have also allowed

much progress in characterizing the computations and neural

signals associated with related processes, such as perceptual

decision making (Gold and Shadlen, 2007) and economic choice

(Padoa-Schioppa and Assad, 2006). However, single-step tasks

have limited ecological validity, resting on the assumption that

agents and their actions have no effect in the world beyond the

immediate reward they obtain. As a result, these tasks do

not tap into some of the key challenges of real-life planning,

which often unfolds over longer time horizons. Unfortunately,

deploying more complex and cognitively demanding para-

digms risks losing the interpretability of behavioral and neural

measurements (Rust and Movshon, 2005). We suggest that the

best way to solve this impasse, as is often the case, is to have

formally defined computational hypotheses. In the case of plan-

ning, these hypotheses take the form of candidate-planning

algorithms that perform competently on tasks of realistic

complexity and offer specific, experimentally testable predic-

tions (LaValle, 2006).
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Fortunately, there now exist many examples of such algo-

rithms. Recent advances in artificial intelligence (AI) have given

us important clues as to the key ingredients of planning algo-

rithms that work well in practice (Silver et al., 2017a, 2018; Hafner

et al., 2019a; Schrittwieser et al., 2020). These algorithms now

achieve near- or even super-human performance on a number

of difficult, large-scale sequential decision-making tasks,

rendering them relevant for understanding how the brain may

implement planning on tasks of similar complexity. While these

algorithms remain unable to perform well in the largely uncon-

strained settings in which humans operate, we argue that they

might give hints as to what is really important for superior perfor-

mance. Our reasoning is that each planning algorithm developed

in AI can be thought of as a recipe for converting goals and

knowledge of the world into actions. As such, these algorithms

share a number of commonalities in the way they produce an

output, but they also differ in a number of important ways related

to the richness of the prior knowledge they employ, how they pri-

oritize different steps of computation, and how they incorporate

the results of these computations into future decisions. Collec-

tively, the various algorithms developed in AI span a sizable

space of the different ways in which planning can be accom-

plished in principle.

Critically, the usefulness of AI algorithms for understanding

biological planning does not rest on the assumption that the

exact same algorithms are used by artificial and biological or-

ganisms. Indeed, there are known fundamental differences be-

tween the two. For instance, while the chess-playing system

Deep Blue was able to defeat Garry Kasparov 3.5–2.5, it

achieved this performance by evaluating 200,000,000 positions

per second (Campbell et al., 2002), whereas Kasparov achieved

a similar performance, presumably evaluating only a handful of

positions per second (de Groot, 1978). Nonetheless, we argue

that it is the fundamental design decisions and consequent algo-

rithmic motifs that are critical for developing efficient planning al-

gorithms in AI that should also apply to the algorithms that the

brain might implement. In other words, by specifying a number

of ways in which planning can be accomplished in principle,

we suggest that AI algorithms can also help neuroscientists

formalize how planning can be achieved in practice by the brain,

which in turn facilitates the generation of clear hypotheses that

can then be tested experimentally. A similar symbiosis between

AI and cognitive neuroscience has, in fact, already been highly

fruitful in the discovery of the core algorithms underlying

reward-based learning in the brain (Schultz et al., 1997), leading

to insights into the neural basis of habitual behavior and its rela-

tionship to goal-directed control (Daw et al., 2005). What we pro-

pose, then, is to leverage this approach to planning algorithms

more broadly (Daw and Dayan, 2014).

Therefore, in this perspective, we advocate for a closer symbi-

osis between the fields of neuroscience and AI to shed light on

how the brain performs planning. We start by reviewing the

essential components of planning and laying out a map for the

most relevant dimensions of the space of planning algorithms

through the lessons learned from AI. Equipped with this map,

we present, for each dimension, the most relevant algorithms

in AI while discussing how existing behavioral and neuroscien-

tific data from humans and animals can be used to rule in and
out candidate algorithms. We find that while this research has

identified a number of relevant brain regions and some general

algorithmic motifs, the existing data remain largely unable to

discriminate various algorithmic details. Finally, we use this sys-

tematic approach to suggest important areas for further research

and propose an approach that could narrow the space of poten-

tial planning algorithms that the brain may use.

REFLEXIVE VERSUS PLANNING AGENTS

In this article, we define planning as the process of selecting an

action or sequence of actions in terms of the desirability of their

outcomes. Note that this definition includes, as a special case,

the selection of actions in terms of their immediate, one-step out-

comes (in which case the label ‘‘goal-directed behavior’’ is

commonly used; Balleine and Dickinson, 1998). At the other

extreme, when actions are chosen based on the desirability of

distant outcomes in the future, our definition also includes the

special case when even the motivational state determining the

desirability of those outcomes is predicted to be different from

the agent’s current motivational state. This latter case has

proved particularly useful for establishing planning behavior in

studies of prospective simulations in non-human animals (Sud-

dendorf and Corballis, 1997; Raby et al., 2007).

According to our definition, planning involves two fundamental

computations: (1) estimating the outcomes of one’s actions and

(2) assessing the utility of such outcomes. These computations

are some of the most fundamental ingredients of intelligence,

and as such, planning has always been a central topic in AI.

Indeed, some of the first AI programs ever written—the Logic

Theorist and the General Problem Solver developed by Newell

and Simon in the 1950s—were, in essence, planning systems

(Newell and Simon, 1956; Newell et al., 1959). Since then, plan-

ning has emerged as one of the major AI methods for action se-

lection in autonomous agents. Autonomous agents, biological or

artificial, continuously perform the perception-action loop (Rus-

sell and Norvig, 2010) (Figures 1A and 1B), perceiving and as-

sessing their current situation in the environment (the ‘‘state’’)

and then selecting and executing an appropriate action, thereby

modifying their future situation in the environment (a ‘‘state tran-

sition’’). The goal of the agent when selecting actions is defined

either in terms of a specific state that needs to be achieved (e.g.,

having our wine glass full) or, more generally, as the maximiza-

tion of a graded quantity (‘‘reward’’) to be accumulated over

time (e.g., the hedonistic value of consecutive sips from our

wine) (Sutton and Barto, 2018).

Planning-based methods for autonomous behavior contrast

with, and sometimes complement, ‘‘reflex’’-based methods

(Figure 1A). Reflex-based methods are those in which the agent

directly maps states to actions (Russell and Norvig, 2010)—an

approach typically associated with classical (model-free) forms

of reinforcement learning (Sutton and Barto, 2018). The mapping

from states to actions, called ‘‘policy,’’ can be represented

directly or indirectly. When it is represented indirectly, the agent

instead represents the long-term desirability (‘‘value’’) of states,

such that the policy amounts to choosing the action in each state

that leads the agent to a higher value state. Policies or values can

be either hardwired (as in most Pavlovian behaviors; but see
Neuron 110, March 16, 2022 915



A

B

C

D

Figure 1. Components of a planning
algorithm
(A and B) Action-perception loop: the agent (left)
perceives the outcome (sensory observations and
rewards, including the attainment of goals; center
top) generated by the current state of the envi-
ronment (right) and executes an action (center
bottom), resulting in the environment transitioning
to a new state (note arrow of time in bottom right).
(A) A reflexive agent selects actions based on a
stored policy, which maps the current state (in-
ferred from observations of the environment) to an
output action. This policy is gradually updated
based on interactions with the environment.
(B) A planning agent selects actions based on the
desirability of their expected consequences. The
agent stores an internal model, which predicts the
outcomes (rewards and state transitions) resulting
from any given state and action. The internal model
is learned based on interactions with the environ-
ment. The policy, then, can be updated (tempo-
rarily or permanently) based on interactions with
the internal model via the process of ‘‘planning.’’
Thus, planning amounts to querying the model to

evaluate candidate actions to inform current or future decisions. The orange and green arrows, respectively, indicate inputs and outputs to the internal model.
(C) A closer look at the three main ingredients of planning algorithms (based on B): the model (center, purple) that determines the type of output returned to a
query; model input (left, orange) representing the query itself; and output incorporation (right, green) representing how the model outputs are used to inform future
behavior.
(D) The space of planning algorithms spanning the three dimensions corresponding to the main ingredients listed in (C). Different planning algorithms correspond
to different combinations of design choices for these ingredients, and as such, to different ‘‘points’’ in this space (black dots show hypothetical examples).
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Derman et al., 2018) or learned incrementally via interaction with

the environment (e.g., when developing habitual behavior). How-

ever, reflex agents are often inflexible: in dynamic environments

where action outcomes or goals change over time, the same pol-

icy that was relevant and thus stored at some point may not

apply anymore. Planning agents can succeed in such dynamic

situations by directly considering the consequences of each ac-

tion, as long as this knowledge is current (Figure 1B).

The distinction between reflex and planning agents has many

parallels in behavioral and neural sciences, though under

different labels, such as automatic versus deliberate control,

habitual versus goal-directed behavior, model-free versus

model-based decision making, and type I versus type II

reasoning (Anderson, 1982; Adams and Dickinson, 1981; Dickin-

son and Balleine, 2002; Kahneman, 2011; Daw et al., 2005;

Dayan, 2009). A common observation across all of these fields

is that humans and other animals exhibit signatures of both re-

flexive and planning-based computations in their behavior.

Thus, a useful (if not essential) first step in studying planning al-

gorithms in the brain is to make sure that subjects’ behavior in a

task reflects the latter rather than the former. A straightforward

way of achieving this is to use tasks unlikely to be solved by re-

flexive behavior, such as tasks that are new to subjects and are

explained only by verbal descriptions or a map so that subjects

need to solve them without having experienced them previously.

An example of such tasks is the Tower of Hanoi, a mathematical

puzzle in which the objective is to move a stack of disks from a

starting position to a goal position while respecting a set of con-

straints on such moves. In this task, humans are often able to

select promising actions even the very first time a state is

encountered (before a policy could be learned from experience),

suggesting that the behavior is unlikely to be reflexive (Kotovsky

et al., 1985).
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In non-human animals, the study of planning is complicated by

the fact that such animals are usually unable to learn how to solve

stereotypical planning tasks without extensive training, making it

difficult to rule out an automatized, reflexive strategy. Thus, a

more nuanced approach is necessary to dissect reflexive and

planning-based computations. The predominant paradigm for

assessing whether behavior is reflexive (habitual) or planned

(goal-directed) involves manipulating the two fundamental com-

putations underlying planning, namely, degradation of action-

outcome contingencies (affecting the estimation of action out-

comes) and devaluation of rewards (affecting the utility of such

outcomes). If a given behavior is sensitive to such manipulations,

it can be inferred to be goal directed, akin to that expressed by a

planning agent. If subjects are not sensitive to such manipula-

tions, the behavior is considered to be habitual, as would be ex-

pected from a reflexive agent (Balleine and Dickinson, 1998).

BRAIN AREAS INVOLVED IN PLANNING

To study how planning is implemented by the brain, it is useful to

know which brain regions are most relevant to the computations

underlying planning. However, different planning tasks may

present the brain with fundamentally different computational

challenges (e.g., motor control versus navigation, dealing with

continuous versus discrete state spaces while planning on

short versus long-time horizons, respectively) and may conse-

quently engage different sensory, cognitive, and motor systems.

Accordingly, different planning tasks will often engage different

brain regions. Note that the involvement of a brain region in the

execution of a planning task does not automatically imply that

this region mediates planning; conversely, even brain areas

that seem to have a critical involvement in planning may also

contribute to processes other than planning. Nonetheless,
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some regions are consistently recruited in the vast majority of

planning tasks (Dolan and Dayan, 2013), and have been explicitly

distinguished from those critical for reflexive behavior. These

areas are our primary focus here.

First, the prefrontal cortex (PFC) has been identified as the re-

gion most directly associated with planning (Goel and Grafman,

1995; Unterrainer and Owen, 2006). Without a functioning pre-

frontal cortex, humans appear to be largely ‘‘stimulus bound,’’

executing behaviors in a reflexive manner and neglecting any po-

tential goal (Duncan et al., 1996). When performing sequential

decision tasks, patients with frontal lesions often fail to achieve

task goals (Penfield and Evans, 1935) and express difficulties

in planning and rule-guided behavior (Shallice, 1982; Owen,

1997; Hoshi et al., 2000) despite understanding the requirements

of the task. In converging neuroimaging results, tasks that

require planning, such as the Tower of Hanoi or its variants,

seem to activate a number of frontal regions in humans (Goel

and Grafman, 1995; Fincham et al., 2002), and PFC activation in-

creases with planning difficulty (Anderson et al., 2005; Owen,

1997). Note that the involvement of PFC in planning and decision

making does not contradict another large body of work impli-

cating PFC in the active maintenance of information for subse-

quent use (Curtis and D’Esposito, 2003), as a crucial component

of planning is the active maintenance of current goals in working

memory (Miller and Cohen, 2001).

In addition to PFC, another brain structure deeply involved in

planning is the striatum, a subcortical structure in the basal

ganglia that receives input from various areas of the brain,

including the frontal cortex. While the circuitry involving the stria-

tum is most commonly associated with the less-flexible, habitual

system, this region is also involved in flexible, planning-based

strategies. Indeed, both lesion and recording studies in rodents

suggest that the dorsomedial portion of the striatum is essential

for goal-directed behavior (Albin et al., 1989; Obeso et al., 2009;

Ragozzino et al., 2002; Yin et al., 2005a; Balleine et al., 2007). For

instance, lesions to dorsomedial striatum seem to abolish the

sensitivity of behavior to outcome devaluation while leaving re-

flexive behavior largely intact (Yin et al., 2005b). In primates, a

similar subdivision between the caudate nucleus and the puta-

men maps onto the rodent dorsomedial and dorsolateral stria-

tum, with the caudate being the most closely associated with

goal-directed behavior and the putamen with motor preparation,

learning, and execution (Simon and Daw, 2011; Wunderlich

et al., 2012).

While the approaches and results described above have been

instrumental in delineating the conditions under which a behavior

is due to reflexive or planning-based computations, and the

importance of the PFC and dorsomedial striatum in mediating

the latter, they are not adequate for identifying the specific algo-

rithm(s) the brain uses for planning. To address this more gran-

ular level of description, two more ingredients are needed. First,

sufficiently rich behavioral paradigms need to be employed. In

particular, tasks with a single step of decision (often used in an-

imal studies) are usually not ideal, as all planning algorithms pre-

dict the same response, i.e., the selection of the action that leads

to the largest reward. Instead, tasks should ideally involve multi-

ple steps of decisions for which different planning algorithms

predict different behavioral and neural signatures. Therefore, in
the following, we will focus mainly on empirical data obtained us-

ing such sequential decision tasks. The second necessary ingre-

dient is the systematic understanding of how different planning

algorithms map onto such behavioral and neural signatures.

For this, the classical approach would be to focus on a select

subset of specific algorithms and test them via model fits (e.g.,

van Opheusden et al., 2017). Here, we take a more systematic

approach and identify the fundamental design decisions and

consequent algorithmic motifs underlying essentially all planning

algorithms. This allows us to build a comprehensive ‘‘map’’ of

planning algorithms and look for empirical evidence for the

main dimensions of algorithmic variability (see also Daw 2012).

The rest of this paper develops such a map and critically evalu-

ates what we do and do not know about where the planning al-

gorithms of the brain are located in this map.

INTERNAL MODELS IN PLANNING

To develop an algorithmic map of planning, we first need to un-

derstand its basic ingredients. The most critical ingredient, used

in all planning algorithms, is an internal model of the environ-

ment: the agent’s representation of how the environment re-

sponds to the agent’s actions. When the agent interrogates the

model with a particular action in a particular state, the model pro-

duces a prediction of the outcome—the resulting state and

reward, or whether a goal is achieved (Figure 1B). Using the inter-

nal model, planning agents can learn from counterfactuals (‘‘if I

performed action X, outcome Y might happen’’), inferring what

action sequences are most appropriate without having to try

each one out in the environment (Sutton and Barto, 2018). This

is particularly useful when the actions being considered are

costly or may lead to catastrophic consequences.

The performance of a planning algorithm can be only as good

as the internal model it uses. An incorrect internal model can give

rise to biased beliefs about action outcomes, which, in turn, may

lead to suboptimal or even pathological behavior (Talvitie, 2017).

Thus, interacting with the world is essential for learning and

improving the internal model itself. When the model is learned

by interacting with the world, each experience can be used to

improve the model, which then, indirectly, can inform multiple

future decisions. In this way, planning allows the agent to

make fuller use of a given amount of experience than other,

e.g., reflexive, strategies (Sutton and Barto, 2018). The learning

of an internal model is an interesting and challenging AI problem

on its own right (Ha and Schmidhuber, 2018; Schrittwieser et al.,

2020), and a major theme in the field of model-based reinforce-

ment learning (Sutton and Barto, 2018). While model learning has

far-reaching implications for cognitive neuroscience (Gl€ascher

et al., 2010; Behrens et al., 2018; Fiser et al., 2010), it is beyond

the scope of this perspective.

In biological organisms, the internal model has been an object

of study for decades (Craik, 1943). In general, it may be used to

infer and predict environmental states at many different levels of

granularity, from low-level sensory attributes to high-level ob-

jects and scene-descriptors (Koblinger et al., 2021). Accordingly,

several brain areas may be involved in implementing the brain’s

internal model of the environment, including even primary sen-

sory areas (Berkes et al., 2011). Nevertheless, planning will
Neuron 110, March 16, 2022 917
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usually depend primarily on the higher-level variables inferred by

the internal model (we rarely need to make decisions depending

on the activation of specific pixels in our retina). In line with this,

brain areas specifically associated with representing these

higher-level variables largely overlap with those required for

planning and take up a sizable fraction of the mammalian brain.

The internal model is sometimes equated to the concept of a

‘‘cognitive map,’’ a representation of one’s spatial environment

akin to the type of information obtainable from a map (Tolman,

1948). The encoding, as well as learning, of such a cognitive

map is most commonly attributed to the hippocampus and the

surrounding medial temporal lobe. Indeed, in rodents, the hippo-

campus is causally involved in certain types of planning behavior

(Miller et al., 2017), and units in the ventral hippocampus, a re-

gion which is strongly connected to those supporting reward

processing, mediate a form of goal-oriented search in mice (Rue-

diger et al., 2012). The hippocampus’s role in configural learning

(O’Reilly and Rudy, 2001) and spatial learning (Doeller and

Burgess, 2008) also points to its involvement in representing in-

ternal models. Most prominently, the hippocampus has a critical

role in representing one’s location in the environment, both

spatial (O’Keefe and Nadel, 1978) and otherwise (Aronov et al.,

2017; Behrens et al., 2018). In turn, this representation supports

memory and guides future action (Shohamy and Daw, 2015).

The hippocampus is also commonly associated with episodic

memory (Scoville and Milner, 1957). Theoretical work suggests

that the episodic memory system can contribute to planning

when one needs to retrieve a contextually appropriate response

(or a previously rewarded action, or sequence of actions) en-

coded only once or a few times, or whenever one needs to

combine multiple experiences obtained at different times to build

a hypothetical scenario (Lengyel and Dayan, 2008; Shohamy and

Daw, 2015; Gershman and Daw, 2017; Mattar and Daw, 2018).

According to these proposals, the hippocampus encodes an

episodic type of internal model where, for each state and action,

one or more memories of the resulting outcomes are retrieved.

Behavioral and neuroimaging results support the involvement

of the hippocampus in event-based decisions—human choices

are influenced by individual experiences made in similar con-

texts (Bornstein et al., 2017), an effect accompanied by hippo-

campal activation and reduced in patients with hippocampal le-

sions (Bornstein and Norman, 2017; Vikbladh et al., 2019).

Besides the hippocampus, prefrontal regions are also thought

to encode (parts of) the internal model. For instance, signals

related to expected reward have been identified in the primate

orbitofrontal cortex (OFC) (Padoa-Schioppa and Assad, 2006;

Valentin et al., 2007), a subregion of the PFC. Activity in OFC neu-

rons is largely determined by an expected outcome (Schultz

et al., 2000; Wallis and Miller, 2003; Roesch and Olson, 2004),

particularly when the outcome is determined by the animal’s

own choice (Padoa-Schioppa and Assad, 2006; Rudebeck and

Murray, 2014; Ballesta et al., 2020). Accordingly, lesioning or in-

activating OFC impairs behavior relying on the inference of out-

comes in rodents (Gallagher et al., 1999; Jones et al., 2012; Gre-

mel and Costa, 2013) and non-human primates (Rudebeck et al.,

2013). Moreover, the OFC is involved in representing not only

rewarding outcomes but also expected future stimuli (Sadacca

et al., 2018; Pauli et al., 2019) and the task space more generally
918 Neuron 110, March 16, 2022
(Wilson et al., 2014). Interestingly, anticipatory representations in

OFC disappear after hippocampal lesions (Ramus et al., 2007),

suggesting that the OFC receives input from the hippocampus

related to internal models. The neighboring medial PFC also

seems to code for the expected reward associated with chosen

actions (Luk and Wallis, 2013). Together, the OFC and medial

PFC precisely represent the types of information required for

planning: the state and reward expected to result from a certain

action. Note, however, that this does not mean that these are

the only regions involved in planning, as the internal model,

while critical, is but a single component of the planning process.

A brain area not implementing an internal model may still

contribute to planning through other processes, such as

providing inputs to, and evaluating the outputs of the inter-

nal model.

In summary, an internal model of the environment is the central

component of any planning algorithm. However, while all plan-

ning algorithms make use of an internal model, each individual

algorithm may do so in a different way. Therefore, we propose

to use the internal model as an anchor with respect to which

we define the dimensions of the space of planning algorithms

(Figure 1C). In particular, we propose that planning algorithms

vary primarily along three dimensions (Figure 1D): (1) the type

of internal model used; (2) the input with which the internal model

is interrogated, i.e., which actions or action sequences are eval-

uated and in which order; and (3) how the output of the internal

model is used to inform future actions. In the following, we

expand on these three dimensions, reviewing along the way

several of the best-known planning algorithms in AI (Figure 2),

including classical as well as some more recently developed

state-of-the-art algorithms, and how they fit in these dimensions,

as well as how they relate to the relevant neural and behav-

ioral data.

DESIGN CHOICE 1: INTERNAL MODEL TYPE

The first major dimension along which planning algorithms differ

is the type of internal model they use. The simplest types of in-

ternal models are those suitable for deterministic environments,

allowing the agent to predict with certainty the state of its envi-

ronment after any sequence of actions (Figure 3A). These

models are most commonly used in the branch of AI known

as ‘‘classical planning,’’ which describes planning problems

involving deterministic action outcomes and a unique, known

initial state (Figure 2). Classical planning algorithms were com-

mon in the early days of AI and are well suited to solving tasks

such as route planning in mazes, logical board games (e.g.,

chess and Go), or puzzles (e.g., Rubik’s cube and the Tower

of Hanoi). Formally, given an input state and an action, a deter-

ministic model returns the resulting state and reward. If the goal

of the agent is to reach a specific state (e.g., a single color on

each face of Rubik’s cube), the model also informs the agent

whether that goal is achieved. In such cases, a plan (sometimes

also called ‘‘solution’’) is a sequence of actions that takes the

agent from its current situation to a goal state, and the process

of finding solutions is called ‘‘search’’ (Russell and Norvig, 2010;

Korf, 1987). Because deterministic models specify the out-

comes of each action with certainty, the planned sequence of



Figure 2. Mapping the space of planning algorithms in AI
Each example algorithm is mapped onto the space of algorithms spanned by three dimensions (Figure 1D, see also inset at top center), determining their main
design choices: (1) the type of internal model used (deterministic versus stochastic; purple); (2) the input with which the internal model is interrogated (e.g.,
uninformed versus informed; orange); and (3) the way the output of the internal model is used to inform future actions (online versus offline; green). References:
breadth-first search (Moore, 1959); depth-first search (Nilsson, 2014); iterative deepening (Korf, 1985); best-first search (Dechter and Pearl, 1985); A* (Hart et al.,
1968); iterative deepening A* (IDA*; Korf, 1985); lookahead algorithms (Geffner, 2013); learning real-time A* (LRTA*; Korf, 1990); policy iteration (Howard, 1960);
value iteration (Bellman, 1957b); Dyna-Q (Sutton, 1991); prioritized sweeping (Moore and Atkeson, 1993); trajectory sampling (Barto et al., 1995); asynchronous
dynamic programing (asynchronous DP; Bertsekas, 1982); random rollouts (Tesauro and Galperin, 1996); real-time dynamic programing (RTDP; Barto et al.,
1995); Monte Carlo tree search (Coulom, 2007).
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actions can be executed ‘‘with eyes closed,’’ without having to

consider inputs on the way (a process also known as ‘‘open-

loop control’’ in optimal control).

Stochastic internal models (often formalized in the framework

of Markov decision processes, MDPs) are more expressive than

deterministic models, capturing the agent’s uncertainty about

how the environment will respond to its actions (Bellman,

1957b; Sutton and Barto, 2018; Figure 3B). This uncertainty

can arise either due to fundamentally stochastic processes in

the environment (aleatory uncertainty, e.g., a coin flip) or due

to partial knowledge of the environment (epistemic uncertainty,

e.g., the unknown outcome of a lever press when tried for the first

time), referred to as ‘‘risk’’ and ‘‘uncertainty,’’ respectively, in

economic decision making. Thus, stochastic models allow

agents to plan in much more general and realistic settings,

such as those involving noisy, random, or unknown physical en-

vironments. Formally, given an input state and action, stochastic

models output either a single sample of the resulting outcome

(‘‘sample models’’) or the probabilities with which a set of out-

comes might occur (‘‘distribution models’’). In either case,

because it is impossible for the agent to know in advance the

exact effects of an action, it is no longer possible to rely on

open-loop control as in classical planning. Therefore, in this

setting, it is often not helpful to pre-compute a sequence of ac-

tions. Instead, what needs to be computed is the best action at

any particular state, a policy, which thus gives the agent more

flexibility to choose each future action depending on future, yet

unknown, outcomes (‘‘closed-loop’’ or ‘‘optimal feedback con-

trol’’). Examples of tasks where planning requires a stochastic

model and closed-loop control are board games involving a
chance component, such as dice rolls, route planning with un-

predictable traffic, and most other realistic tasks.

Naturally, humans and other animals are able to consider sto-

chastic outcomes when planning (Daw et al., 2011; Keramati

et al., 2016; Miller et al., 2017; Akam et al., 2021; Miranda

et al., 2020). Studies on the control of eye and arm movements

have provided particularly striking demonstrations of stochastic

internal (so-called forward) models underlying motor planning

(Harris and Wolpert, 1998; Todorov and Jordan, 2002). Thus,

planning in the brain must be closed loop, at least when neces-

sary (an assumption typically incorporated in computational

models of planning). Nevertheless, in some tasks with determin-

istic outcomes, neural data suggest that entire sequences of ac-

tions may be planned in advance. For instance, when monkeys

are asked to plan a sequence of actions to achieve a goal, re-

cordings from the lateral PFC during the preparatory phase of

a sequential decision task contain information about the entire

planned sequence of actions (Averbeck et al., 2002; Mushiake

et al., 2006), even when the planned sequence involves mistakes

(Averbeck et al., 2002). This suggests that monkeys deploy

open-loop control at least in some tasks, which could be plau-

sibly implemented by a deterministic model.

Given the important consequences of the type of internal

model for narrowing the space of possible planning algorithms

(Figure 1C), it is surprising how little direct evidence there is in

favor of either deterministic or stochastic models. Part of this dif-

ficulty arises from the fact that the alignment between open-

versus closed-loop and deterministic versus stochastic models

is not perfect. For instance, a deterministic model may be used

to replan in every time step. Similarly, even if suboptimal, a
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Figure 3. Types of internal models
Large white or colored circles denote states, and small black circles denote
actions. Top parts of both panels show an example isolated action and the
resulting states; bottom panels show a simple environment with three states
and the actions available in each, causing transitions between them.
(A) In a deterministic model, outcomes can be predicted with certainty—in
particular, one action always leads to the same state. By interrogating such a
model with a particular action in a particular state, the agent can predict with
certainty the resulting state and reward, or whether a goal is achieved.
(B) A stochastic model captures the agent’s uncertainty about how the envi-
ronment responds to its actions (in particular, one action may lead to many
states with different probabilities, represented as different shades of gray
here). By interrogating such a model with a particular action in a particular
state, the agent can obtain either a single sample of the resulting outcome or
the probabilities with which a set of outcomes might occur.
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stochastic model may be used to commit to a sequence of ac-

tions and produce open-loop behavior (either because a sample

model is used or because an action sequence is evaluated at

once as a chunk, as we discuss below). Thus, examining only

if behavior is open loop or closed loop is not sufficient for infer-

ring the type of internal model used. To obtain the required evi-

dence, one should not only use tasks with stochastic transitions,

which can only be faithfully captured by a stochastic internal

model but also particularly tasks in which open- and closed-

loop planning differ in the values they compute and thus the

actions they favor (for an example, see Friedrich and Lengyel,

2016). This would then allow distinguishing between these plan-

ning strategies (and conversely, between types of internal

models) by measuring the extent to which the actions or values

of each is reflected in overt behavior or correlated with neural ac-

tivity, respectively.

In addition to the deterministic versus stochastic distinction,

internal models can also vary in terms of the timescale on

which their output is expressed. For example, the action of

‘‘donating to charity’’ can have an immediate (negative)

outcome for one’s bank account and a delayed (positive)

outcome for one’s level of happiness. However, choosing the

‘‘right’’ timescale for predictions is non-trivial. The successor

representation (SR) offers a principled solution to this problem
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by actually side stepping the need to commit to one particular

timescale and instead providing blended predictions including

all timescales (with larger weights given to imminent versus

distant outcomes). Such a representation allows multi-step

planning tasks to be solved using a single-step algorithm,

greatly reducing the computational complexity of planning

(Dayan, 1993). The SR has found some support in behavioral

studies with humans (Momennejad et al., 2017; Russek et al.,

2017) and has also been argued to explain distortions in the

response of hippocampal place cells that arise after extensive

experience (Stachenfeld et al., 2017). Whereas planning with

the SR is theoretically simple, re-planning can be sometimes

challenging because of the fact that predictions of longer-hori-

zon outcomes implicitly depend on the agent’s previous policy.

This inconvenience can be corrected by allowing the previous

policy to exert only a weak bias on the inferred action values

(Piray and Daw, 2021).

Finally, internal models can also vary in terms of how much

states are abstracted away from raw observations. This is partic-

ularly relevant in problems with partial observability, where

states and observations might not coincide. For instance, a plan-

ning agent in a video-game task can use states expressed

directly in terms of a vector of pixel values or expressed in the

more abstract terms of the physical parameters of objects (Wahl-

ström et al., 2015; Hafner et al., 2019b). Recent work has pro-

posed that internal models in human planning might use an

abstraction that merges ‘‘microscopic’’ states (i.e., states closer

to raw observations) when they have similar future conse-

quences (Lehnert et al., 2020).

DESIGN CHOICE 2: ORDER OF COMPUTATION
(MODEL INPUT)

The second major way in which planning algorithms differ is in

terms of which actions are evaluated and in what order. That

is, once the form of the internal model is determined, one

must specify the inputs with which the model is interrogated

(Figure 1C). The iterative selection of actions to evaluate

amounts to computing a decision tree from the internal model.

A decision tree has an initial state as the root node, actions rep-

resented as branches, and the states reachable from the initial

state, according to the internal model, represented as leaf nodes

(Figure 4A). Each leaf node can then be recursively expanded ac-

cording to a strategy specific to the algorithm.

Exhaustive planning—evaluating all branches (action se-

quences) of the decision tree—is impractical in all but the simplest

settings, as it typically requires vast amounts of computational re-

sources (imagine evaluating all possible outcomes in chess, i.e.,

all board configurations). And even in settings where that might

be possible, it is often important that the inputs to the model—

the actions or action sequences to be evaluated—are ordered

appropriately, so that the best outcome can be achieved with min-

imal amounts of time and computation. In the decision tree frame-

work, this prioritization is expressed in terms of how the algorithm

chooses the root node first and the leaf nodes to be expanded

subsequently (Figure 4A). A fundamental distinction along this

dimension is that between ‘‘uninformed’’ and ‘‘informed’’ algo-

rithms, according to whether or not they make these choices



A B Figure 4. Expansion of a decision tree
(A) Starting from a root node, a decision tree is
expanded by iteratively interrogating the internal
model to infer the outcomes of any action sequence.
For illustration, the expansion of a deterministic in-
ternal model (Figure 3A) is shown. Shaded ovals
indicate the action being expanded, and numbers
indicate the order of expansion (here, representing a
breadth-first algorithm). Actions (small black circles)
available in each state (large colored circles) form
branches (sub-trees). The deepest unexpanded
nodes are called leaf nodes.
(B) Different strategies can be used to prioritize
the computations involved in expanding the
tree. Three example strategies are shown (see
also main text): pruning, whereby unpromising
branches of the tree are ignored; truncation,
whereby the tree is only expanded up to a maximum

depth (a maximum number of actions in a sequence); and chunking, whereby multiple actions are clustered into an ‘‘option’’ (action-state sequences
joined by shaded background) that can be evaluated as if it were a single action.
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based on estimating how favorable a particular branch of the de-

cision tree is (in terms of cumulative rewards or costs).

If the expansion of nodes of the decision tree is not guided by

estimates of favorability, planning is uninformed (or unfocused)

and amounts to systematically expanding nodes of the decision

tree according to some predetermined schedule or strategy. For

example, uninformed algorithms may start from the current state

and iteratively expand the shallowest unexpanded node (a strat-

egy known as breadth-first search) or alternatively expand the

deepest unexpanded node (a strategy known as depth-first

search). These algorithms are particularly relevant when the in-

ternal model is deterministic, and the task is defined in terms

of a discrete goal state (e.g., winning the game, or reaching a

goal location)—the setting of classical planning (Figure 2). In

such cases, these algorithms are sometimes called ‘‘blind

search’’ because of the way they behave—the expansion of

the tree happens without any knowledge of the goal location,

and once the goal state is reached, a solution is identified, and

the search process may be halted. In addition to expanding for-

ward from the current state, search algorithms may also expand

backward from the goal state or expand simultaneously in both

directions.

One of the most effective approaches in AI is to use the agent’s

current state as the root node (because of its imminent rele-

vance) and expand from there only up to a limited depth,

a strategy known as ‘‘lookahead’’ (Figure 4B; Korf, 1990).

When expansion is ‘‘truncated’’ in this way, action values are

computed by summing the reward (or cost) accrued up to the

truncated state with the heuristic value of the truncated state,

which serves as a stand-in for the reward (or cost) to be accrued

thereafter (see below). In board games, such as chess, rather

than evaluating entire sequences of actions until the end of the

game, an algorithm might evaluate a given action by assessing

the predicted state of the game after a few moves, using a static

evaluator that counts the different number of pieces on the board

as a heuristic—a stand-in for the likelihood of victory (Campbell

et al., 2002). In general, the deeper the lookahead is, the better

the corresponding approximations are, but also the slower the

planning process becomes (Geffner, 2013). An extreme version

of lookahead is to expand a single-step decision ‘‘tree’’ (i.e.,

evaluating an action in terms of its immediate outcomes). This
strategy is particularly fruitful in stochastic environments, where

algorithms can improve the agent’s policy by expanding a large

number of such single-step trees, starting from all possible

states (as in dynamic programming algorithms, such as value

iteration or policy iteration) or from a random sample of states

(as in the Dyna-Q algorithm).

If exhaustive planning is rarely possible in artificial agents, it

ought to be even less likely in biological agents, where the rate

of evaluation is thought to be much lower (de Groot, 1978).

Indeed, a common observation in behavioral studies of planning

is that humans often use lookahead to prioritize computation

when making a decision (Keramati et al., 2016). The typical depth

of expansion in humans, found across multiple behavioral

studies, is approximately 3–6 steps (Snider et al., 2015; Arad

and Rubinstein, 2012; Krusche et al., 2018; Huys et al., 2015;

van Opheusden et al., 2017). Yet, even within a single task and

subject, expansion depth is not a completely fixed algorithmic

property, but rather variable according to immediate needs.

Subjects trade off expansion depth with the frequency of recom-

putation, arbitrating between a shallow lookahead after each ac-

tion or a deeper lookahead (pre-committing to a short action

sequence) every few actions (Snider et al., 2015), pointing to

the existence of some type of computational budget that can

be re-allocated based on task demands. In line with this hypoth-

esis, increased time pressure tends to result in a shallower look-

ahead (Keramati et al., 2016; van Opheusden et al., 2017), point-

ing to a speed-accuracy trade-off where a deeper expansion

leads to more accurate evaluations.

To better prioritize a limited computational budget, informed

(or focused) planning algorithms leverage estimates of the favor-

ability of branches for choosing where to expand the decision

tree. These estimates are typically obtained by using a ‘‘heuris-

tic,’’ a quick-and-dirty estimate of the distance or cost separating

a state from a goal state or of the cumulative reward expected to

follow from a state (and, in fact, the same value used as a stand-in

when truncating the decision tree in lookahead algorithms; Pearl,

1984; Geffner, 2013). By using a heuristic, informed planning al-

gorithms are able to focus computation on promising states

and actions (or conversely, prune unpromising parts of the deci-

sion tree, Figure 4B). This prioritization saves vast amounts of

computation, for example, when planning a route between New
Neuron 110, March 16, 2022 921



ll
OPEN ACCESS Perspective
York and San Diego, heuristics can prevent the evaluation of

routes through Montreal that might have been considered by un-

informed methods. Indeed, most uninformed algorithms have an

informed counterpart which can achieve more efficient results by

using a heuristic to focus computation (Figure 2). For instance,

the most straightforward heuristic-based algorithm for determin-

istic environments, best-first search, improves upon breadth-first

search by selecting nodes to expand greedily based on the heu-

ristic value (as opposed to based solely on the node depth as in

breadth-first search; Dechter and Pearl, 1985).

An even more effective approach, formalized in the highly suc-

cessful A* (‘‘A-star’’) search algorithm (Hart et al., 1968), is to

select nodes based not only on the heuristic value of the candi-

date node but also on the cost separating the root and the candi-

date node. This algorithm, in fact, forms the basis of many

contemporary route planning services, such as that used in Goo-

gle Maps. Heuristics are also incredibly useful for focusing

computation in stochastic environments. Classic examples of

informed algorithms that can be deployed with either determin-

istic or stochastic models are asynchronous dynamic program-

ming, a focused version of conventional dynamic programming

(Korf, 1990; Barto et al., 1995), prioritized sweeping, which prior-

itizes the selection of Dyna updates (Moore and Atkeson, 1993),

and Monte Carlo tree search (MCTS; Coulom, 2007). MCTS is an

algorithm commonly used in board games that evaluates actions

iteratively, by performing multiple simulations of how the future

might unfold (called rollouts) and using the results of early roll-

outs to focus later ones. Indeed, many of the recent AI break-

throughs in board games can be traced back to a clever selec-

tion of heuristics to guide the forward simulations in MCTS

(Silver et al., 2016, 2017b, 2018).

Given the high performance and accuracy of informed algo-

rithms in AI, one might expect that biological organisms might

use similar strategies when planning. A good example of this is

the widespread use of a Euclidean distance-based heuristic in

animal (and human) navigation (Gallistel, 1990), putatively under-

pinned by the active maintenance and updating of Euclidean dis-

tance to the goal by the hippocampal formation (Howard et al.,

2014; Epstein et al., 2017). More generally, behavioral data sug-

gest that humans will use a range of focused strategies when-

ever possible. For example, humans typically avoid selecting a

sequence of actions potentially leading to a transient large

loss, even when considering the full set of future outcomes

that could lead to a larger gain (Huys et al., 2012, 2015). This sug-

gests that subjects ‘‘prune’’ entire branches of the tree during

planning. Interestingly, when the full tree is presented visually

along with the associated rewards, subjects do not seem to

prune but take into account the entire set of prospective possi-

bilities (Snider et al., 2015), suggesting that subjects only prune

when internal evaluation is needed—another evidence for the

flexible adjustment of algorithmic features. Notice that pruning

and truncation are not mutually exclusive strategies, with the

former reducing the width and the latter reducing the depth of

the decision tree that needs to be considered (Figure 4B).

Another way to alleviate the computational burden of planning

by well-chosen inputs is to combine a sequence of actions into

units (sometimes called ‘‘options’’) that can then be evaluated

as an individual model input (Figure 4B). In AI, options have
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played a key role in speeding up reinforcement learning and

planning (Sutton et al., 1999b), becoming one of the key research

areas for developing autonomous agents (Barto and Mahade-

van, 2003). The challenge, of course, is to define such options

in a way that proves useful. In humans, options also appear to

play a key role in planning (Solway et al., 2014). In particular, ac-

tions that have consistently followed from one another are

‘‘chunked’’ as a unit that can be later evaluated independently,

a mechanism that has been hypothesized to give rise to habits

(Dezfouli and Balleine, 2013). For example, a detailed analysis

of reaction time data using a computational model of evidence

integration revealed that, indeed, sequences of two actions,

rather than individual actions, were treated as independent units

to be evaluated (Solway and Botvinick, 2015). Once a series of

actions have been combined into a chunk, their computed

values can be stored and later reused, a strategy known as

‘‘memoization’’ (Huys et al., 2015).

In humans, these various algorithmic motifs (e.g., lookahead,

pruning, chunking) all seem to play a role in reducing the

computational costs of planning by prioritizing the inputs to

the model in humans (Huys et al., 2015). However, the results

above also highlight an intrinsic difficulty in discovering the

specific planning algorithm(s) used by biological agents:

sometimes multiple algorithms with very different inner work-

ings predict similar, if not identical, behavioral responses.

Additionally, sometimes one strategy may masquerade as

another (e.g., best-first search may indirectly implement prun-

ing, since expanding greedily generally amounts to not ex-

panding paths beyond a large loss). To overcome this limita-

tion, rather than focusing only on the output behavior (the

end result of the algorithm), one can attempt to observe the al-

gorithm at work by directly recording neural activity associated

with its latent variables (i.e., the expanded branches of the de-

cision tree; Box 1).

As an example, direct neural recordings have allowed us to

resolve an important distinction in this dimension: whether

different branches of the decision tree are evaluated serially or

in parallel (Cisek, 2012; Hunt and Hayden, 2017). This distinction

is less relevant for AI because, in general, the specification of

most AI algorithms requires serializing the evaluations as se-

quences of steps in computer code (though parallelization might

be possible with multithreading). In biological organisms, howev-

er, the distinction is important to consider as it constrains the

types of circuits capable of implementing planning. Interestingly,

many computational models typically assume that multiple op-

tions can be evaluated in parallel (Wong and Wang, 2006; Bal-

leine et al., 2007; Collins and Frank, 2014), but neural data might

suggest otherwise. In a task involving multi-attribute choice, re-

cordings from OFC neurons in non-human primates correlate

primarily with the value of the currently fixated option rather

than all options, representing different values as the focus of

attention is shifted (Hunt et al., 2018). This pattern of results

also mimics the finding that OFC primarily represents the value

of the attended option at any given time (Rich and Wallis,

2016). While these tasks do not require expanding a decision

tree and, as such, cannot fully rule out the parallel evaluation of

different branches, they nonetheless suggest that, at least in

OFC, action evaluation might proceed in a serial manner.
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Figure 5. Use and re-use of the results of
planning
(A) A decision tree expanded at time t0 using any
of the methods described in the main text. We
consider here a setting where the agent expands
from state s, which has s0 as one of its successor
state.
(B) In online algorithms (i.e., decision-time plan-
ning), planning and acting are interleaved. The
results of a tree expansion are used only for
choosing the immediate next action and are dis-
carded once the consequent state transition has
happened. For this reason, online algorithms
typically focus computation on the current state
(e.g., lookahead). In the example shown, state s
was expanded at t0 because it was the current
state at the time, and by executing the appropriate
action, a transition to state s0 happened. Upon
transitioning to a new state s0, at t = t0 + 1, plan-
ning needs to start afresh.
(C) In offline algorithms (i.e., planning in the
background), planning and acting are performed
in separate phases. The results of a tree expan-
sion are, by necessity, stored for later use. Thus,

upon transitioning to a new state s0, agents can re-use previous computations with minimal cost when selecting actions. Note that, while we represent here the re-
use of a plan after a single transition, planning computations can also be stored and reused at a much later time.
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DESIGN CHOICE 3: INCORPORATION OF OUTPUTS

The third major way in which planning algorithms differ is in how

planning ultimately informs imminent or future behavior. In other

words, upon estimating action outcomes and their utility, how

are the results translated into improved behavior? The most

important distinction here is between online and offline algo-

rithms, depending on whether the results of planning are used

immediately or saved for later (Figure 5). In ‘‘online’’ (also known

as ‘‘decision time’’) algorithms, planning and acting are inter-

leaved, such that the results of planning (Figure 5A) are used

only for choosing the immediate next action and are discarded

once the consequent state transition has occurred (Figure 5B).

However, time is always at a premium when planning online:

we rarely have unlimited time to choose our actions (for example,

in real-time game play). Therefore, online planning almost always

needs to be approximate. The single most common approxima-

tion used in online planning algorithms is to focus computation

on the agent’s current state and on the evaluation of immediately

available actions for imminent behavior (i.e., to use lookahead,

see design choice 2). This strategy is, in fact, used to construct

online counterparts to classic offline algorithms, such as the

learning real-time A* algorithm based on A* (Figure 2).

Most studies of planning in biological organisms tend to focus

on online planning because of its experimental tractability: it is

much more straightforward to link a choice to cognitive and neu-

ral processes that immediately preceded it than to processes

that occurred at any earlier point in time. Indeed, all of the empir-

ical results presented so far in this paper concern online plan-

ning. Historically, perhaps the first report of a behavioral signa-

ture associated with online planning was Tolman’s description

of vicarious trial and error (VTE), almost a century ago (Tolman,

1938). When rodents reach a decision point in a maze (e.g., a

bifurcation), they often pause and orient back and forth between

the alternative paths, as if they were deliberating between the

choices (Redish, 2016). Interestingly, VTE tends to disappear af-
ter extensive training on a task (Redish, 2016), consistent with a

reduced need for planning in extensively trained tasks (Daw

et al., 2005).

More recently, VTE was found to happen concurrently with

theta sequences in the hippocampus (Foster and Wilson, 2007;

Johnson and Redish, 2007). The hippocampal formation can

potentially offer a direct window into planning algorithms, given

the relatively straightforward mapping between states and loca-

tions in navigation (O’Keefe and Nadel, 1978) and the well-

known encoding of location in the activity of hippocampal place

and entorhinal grid cells (Moser et al., 2017). While place cells

typically respond when the animal is in a specific location in

the environment (the place field of the cell), during VTE (but

also during freezing in fear and active movement), these cells

fire in sequences encoding a short trajectory connecting the an-

imal’s previous location, its current location, and a few future lo-

cations (Foster and Wilson, 2007; Johnson and Redish, 2007).

Notably, at decision points with two alternative paths, theta se-

quences encode the alternative paths in constant alternation at

approximately 8 Hz (i.e., one path per 125 ms, akin to a short

rollout) (Kay et al., 2020). This raises the intriguing possibility

that this cycling might underlie the evaluation of different candi-

date paths, as in a lookahead-like online planning algorithm (Pa-

pale et al., 2016; Pezzulo et al., 2019).

Another way to manage the problem of time pressure that

haunts planning is to abandon online algorithms altogether and

instead, use ‘‘offline’’ algorithms in which planning and acting

are performed in separate phases. In the planning phase, a

plan (an action sequence in the deterministic case or a policy

in the stochastic case) is pre-computed and then stored. This

stored plan can then be consulted with minimal computational

(and, thus, time) cost during the action phase (Figure 5C). Clas-

sical planning methods (using deterministic internal models),

such as breadth-first or depth-first search, are typically used in

the offline setting where a whole sequence of actions (a solution)

must be found before the agent starts acting. In stochastic
Neuron 110, March 16, 2022 923



Box 1. Using behavioral and neural data to adjudicate between planning algorithms

To discover how the brain implements planning, we argue that neuroscientists should specify their computational hypotheses in the

form of planning algorithms. As we argued previously, each planning algorithm can be thought of as a recipe for converting goals

and knowledge of the world into actions (Figure 6A). Thus, to adjudicate between alternative algorithms, one would ideally examine

both the resulting actions predicted by each algorithm and the actual recipes that gave rise to these actions and compare those with

behavioral and neural data recorded from animals, respectively. Below, we describe how this approach would work in practice

through a simple illustrative example.

A B C

D E F

Figure 6. Example approach for using behavioral and neural data to adjudicate between planning algorithms
(A) A computational hypotheses about planning can be formalized as an algorithm (represented as a black box): a procedure that, for a given input state and
goal, outputs an action or action sequence.
(B) A state-space representation of a simplified navigation task. Each colored node represents a different state, and each edge represents a possible transition
between states (via an action). The length of an edge indicates the distance between the nodes it connects, which we formalize as a cost associated with that
transition. Since this representation is assumed to be known by the agent, it is also the agent’s internal model of the task.
(C) Example trial of the task. The agent is presented with a start and a goal state. The agent needs to identify the action sequence requiring the minimum total
traveled distance from the start to the goal, and to select the first action of this sequence.
(D) Expansion of a decision tree according to two alternative algorithms: best-first search (top) and A* search (bottom). Each algorithm iteratively expands a
decision tree starting from the start state until a path to the goal state is found. Each white circle represents one iteration of expansion, with the state expanded
indicated beneath it. Note that the third state expanded by best-first search (pink, top) is different from the third state expanded by A* (yellow, bottom).
(E) Example behavioral data predicted by each algorithm across multiple trials equivalent to (C). Each bar indicates the relative frequency of selecting each
possible action. Aside from a small amount of randomness, both algorithms predict the selection of the action leading to the green state.
(F) Example neural analysis. Neural data collected during presentations of distinctive sensory cues associated with each state can be used to train a state
classifier (e.g., using multi-voxel pattern analysis in functional imaging [Norman et al., 2006] or linear decoding of population recordings in electrophysiological
experiments [Dayan and Abbott, 2001]). This classifier can then be used to reveal which states are likely to have been expanded during planning. Each bar
indicates the output of a binary classifier applied to distinguish between the yellow and pink states. For a best-first search agent, the classifier is expected to
provide greater evidence for the pink state (expanded) versus yellow (not expanded) during planning. Conversely, for an A* search agent, the classifier is
expected to provide greater evidence for the yellow (expanded) versus pink (not expanded) during planning.

We consider here the adjudication between two simple search (classical planning) algorithms: best-first search and A* search. Both

these algorithms are informed, offline, and use deterministic models, so their distinction is rather subtle (Figure 2). Indeed, these

algorithms only differ with respect to the order of computation (design choice 2). Here, we examine these algorithms in a simple

multi-step task with eight states and deterministic transitions, analogous to a spatial navigation task (Figure 6B). In this example

task, when presented with a start and a goal state, the subject must identify the action sequence that requires the minimum traveled

distance from start to goal (Figure 6C). Note that, while these algorithms compute entire action sequences every time they are

executed, the observable behavior of the subject only depends on the first action of the sequence computed at a given decision
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point (as a new sequence may be planned as soon as the next decision point is reached). For simplicity, we assume that the subjects

have complete knowledge of the states and transitions defining the task (i.e., the internal model).

Let us consider an example trial in this task. Given a state and a goal, each algorithm follows a different recipe for expanding a de-

cision tree until an action is selected (Figure 6D). Best-first search always expands the node with highest heuristic value, which, in

this case, amounts to the node with the lowest estimated (e.g., Euclidean) distance to the goal. A*, instead, expands the node with

the lowest estimated distance from the start to the goal, i.e., it considers both the distance from the start and the estimated dis-

tances to the goal.

To distinguish which of the two algorithms provides a better account of subjects’ behavior, the simplest approach is to compare the

actions selected by each. If the task is sufficiently rich, the actions selected by each algorithm might be different. In such cases,

subjects’ behavior can be compared with the actions selected by each algorithm. By repeating this procedure across multiple trials,

one algorithm may be found to provide a better fit to subject behavior than the other.

However, if the task is not sufficiently rich or the difference between the two algorithms is too subtle, the actions selected by each

could be identical, as in our example trial (Figure 6E). Reaction times may also offer useful clues, as even if two algorithms arrive at

the same decision, they may take a different amount of computations, e.g., different number of iterations, to do so. For serial algo-

rithms, this will be reflected in different reaction times. However, sometimes even this cannot distinguish between two algorithms

(Figure 6E, both algorithms take 4 iterations to reach the goal). In such cases, neural data can be used to adjudicate between the

candidate algorithms. For example, if the competing algorithms expand different nodes, neural data can be used to classify/decode

these states during planning, providing greater evidence for one algorithm over the other (Figure 6F).
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settings, where optimization is performed over policies rather

than action sequences, offline planning can be used to improve

the agent’s policy, which can then be used for selecting multiple

actions in the future. This process, sometimes known as ‘‘back-

ground’’ planning, is typified by algorithms, such as dynamic

programming and Dyna, which compute policies in remote

states and store them for later use (Figure 2). However, the

time savings at action time of such offline algorithms come

with the disadvantage that the previously computed plans may

become less useful over time, (e.g., when they involve states

that are currently irrelevant or unreachable). Worse even, pre-

computed plans may also be invalid (e.g., if the environment,

or our knowledge of it, has changed since the pre-computation

was performed), thus losing some of the behavioral flexibility

that is the main appeal of planning in the first place.

Behavioral evidence for offline planning in biological organ-

isms is often difficult to obtain due to the lack of direct corre-

spondence between the planning process and the improved

behavior that results from it. However, a carefully designed

behavioral experiment with humans suggests that processes

occurring during a rest phase can impact a subject’s choices

in a later test phase (Gershman et al., 2014). Using a 2-step

task, subjects learned different parts of an internal model (first-

stage outcomes and second-stage rewards) in different phases

of the experiment. Choice behavior was consistent with a plan-

ning agent that combined the different pieces of the internal

model in their decision, indicating a planning computation. Inter-

estingly, increasing the subject’s cognitive load during the

learning of the second-stage rewards but long before the deci-

sion, reduced the degree to which this combination occurred.

In contrast, increasing cognitive load immediately prior to the

final choice did not affect performance. This suggests that the

cognitive load manipulation interfered with the planning pro-

cesses even before subjects were asked to make a decision,

suggesting the existence of an offline planning mechanism.

Associating neural data with offline planning is also chal-

lenging because of the inherent difficulty of relating neural activ-
ity to a change in behavior that is only measured at a later point in

time. One way of establishing this relationship is to identify neural

activity related to a state other than the agent’s current state (a

nonlocal state) and which is unlikely to be relevant for decisions

the animal is currently taking (if any). Here, again, hippocampal

place cells may shed light onto this process. In ‘‘hippocampal

replay,’’ similar to the theta sequences described above, place

cell activity represents coherent sequences of spatial locations

akin to those experienced by the animal during navigation. For

example, hippocampal replay often forms trajectories that start

at the animal’s location and can extend forward toward a goal

location, with the represented trajectory being predictive of up-

coming behavior (Pfeiffer and Foster, 2013; Singer et al., 2013).

Thus, like theta sequences, hippocampal replay may be involved

in online planning. However, hippocampal replay differs from

theta sequences in several important ways that make it also suit-

able for representing offline planning. For instance, unlike theta

sequences, which happen during active locomotion when online

planning would be required (Foster and Wilson, 2007; Pezzulo

et al., 2019), hippocampal replay often happens at times when

there are no apparent decisions that need to be planned, such

as during moments of rest (Diba and Buzsáki, 2007) and sleep

(Wilson and McNaughton, 1994; Lee and Wilson, 2002). Also, un-

like theta sequences, hippocampal replay can extend not only

forward but also backward in space (Foster and Wilson, 2006),

recapitulating the animal’s previous steps. This may be a signa-

ture of backward planning from the current location, which can

be useful for future decisions, i.e., offline planning, but hardly

for current decisions, i.e., for online planning. Hippocampal

replay can also span much longer distances (Davidson et al.,

2009) than those spanned by theta sequences and may repre-

sent locations in different environments altogether (Karlsson

and Frank, 2009). Therefore, while theta sequences appear to

be involved strictly in online planning, the representational con-

tent of hippocampal replay is highly suggestive of a potential

role in not only online but possibly also offline planning (Mattar

and Daw, 2018; Pezzulo et al., 2019).
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To go beyond a suggestive role, however, one must establish

a direct link between nonlocal activity and actual changes in the

corresponding nonlocal policy, as reflected in behavior. Some

evidence points in that direction. For example, when replay is in-

terrupted electrophysiologically, animals exhibit dysfunctional

value learning (Girardeau et al., 2009) and deficits in behaviors

that cannot be executed with a reflexive strategy (Jadhav

et al., 2012). By optogenetically disrupting the replay of specific

memory traces, animals exhibit deficits in learning the associa-

tion of rewards to those locations (Gridchyn et al., 2020). More-

over, awake replay activity predicts correct choices on a trial-by-

trial basis (Singer et al., 2013), and sleep replay of an unexplored

arm predicts later preference for that arm (Ólafsdóttir et al.,

2015). More recently, hippocampal replay was found to mediate

nonlocal credit assignment in rodents (Barron et al., 2020), and

backward replay (measured with magnetoencephalography)

was similarly found to mediate nonlocal credit assignment in hu-

mans (Liu et al., 2021). The role of replay in offline planning sug-

gested by these various studies can be captured by a normative

computational model associating place cell activity with nonlocal

action evaluation (Mattar and Daw, 2018).

However, other empirical evidence paints a more controversial

role of replay on planning. For example, replay can sometimes

over-represent trajectories unrelated to the upcoming behavior,

more so than currently relevant locations (Gupta et al., 2010).

Moreover, these trajectories more often include previously than

currently rewarding states (Carey et al., 2019; Gillespie et al.,

2021). Thus, to establish a conclusive relationship between

replay and planning, existing computational models will need

to be revised to explain these apparently contradictory results.

More generally, offline planning is but one possible computa-

tional manifestation of memory consolidation, inasmuch as it in-

volves the retrieval of specific memories and their integration into

a longer-term, more semantic representation (here, the value

function or policy). Indeed, hippocampal replay has been tradi-

tionally interpreted as a signature of memory consolidation or

maintenance (McClelland et al. 1995; Káli and Dayan 2004). It

will be interesting to develop and test specific predictions that

distinguish between all these different and perhaps complemen-

tary computational accounts of replay.

To be able to flexibly trade off time against accuracy, many of

the algorithms we considered so far can produce useful (albeit

not necessarily optimal) behavior even when their execution is in-

terrupted prematurely (i.e., they belong to the class of anytime al-

gorithms; Horvitz, 1987; Russell and Norvig, 2010). In other

words, in these algorithms, planning is not an all-or-none affair,

where you have either a complete plan or nothing. Instead,

they incrementally improve their plan (and thus their perfor-

mance) with more processing time. There are fundamentally

two distinct mechanisms for achieving this. First, there exist

‘‘deterministic’’ algorithms that iteratively refine their estimates

of action values or optimal actions (policy), e.g., by increasing

the depth of lookahead or by implementing some form of

gradient-based optimization. These include policy gradients

(Sutton et al., 1999a), several incarnations of generalized policy

iteration (Sutton and Barto, 2018), and some neural network al-

gorithms (Friedrich and Lengyel, 2016). Second, there exist ‘‘sto-

chastic’’ algorithms that, on each run, only return a single noisy
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estimate of values or actions. This may happen due to using a

sampling-based stochastic internal model (as in design choice

1) or stochastically choosing actions for evaluation (as in the

rollout-based algorithms described within design choice 2). In

either case, the outputs of several runs therefore need to be

averaged to obtain a more reliable estimate (an idea that under-

lies the now ubiquitous planning algorithm MCTS and its many

variants; Coulom, 2007; Silver et al., 2016). It is this averaging

that can then be performed iteratively and that essentially corre-

sponds to a form of internal evidence accumulation (where the

evidence to be accumulated is the sequence of noisy estimates

provided by subsequent runs of the stochastic planning algo-

rithm). For example, such an evidence accumulation process,

performed in parallel for different paths of a decision tree, has

been proposed to account for the dynamics of deliberation in on-

line planning (Solway and Botvinick, 2015). More generally, it re-

mains an interesting open question as to which class of iterative

anytime algorithms is responsible for the ubiquitously observed

speed-accuracy trade-offs in biological planning.

PLANNING OUR WAY FORWARD

We have described a new taxonomy for the three core compo-

nents of a planning algorithm and, oriented by this taxonomy, re-

viewed what is currently known and unknown about how plan-

ning is implemented in the brain. In dimension one, we found

that the brain is capable of using stochastic internal models

but will resort to deterministic ones if the task permits. In dimen-

sion two, we found that the brain uses heuristics to focus compu-

tation on the most relevant, depth-limited action sequences and

likely evaluates candidate actions serially and not simulta-

neously. Finally, in dimension three, we reviewed evidence for

both online and offline planning in different settings and for an

iterative (rather than all-or-none) process where performance

incrementally improves as more time is allowed for planning.

In light of recent breakthroughs in AI research, particularly in

the field of planning (Silver et al., 2017a, 2018; Hafner et al.,

2019a; Schrittwieser et al., 2020), one might be compelled to

think that such breakthroughs were made possible by entirely

distinct approaches to planning that would not fit into this taxon-

omy. However, such breakthroughs are better seen as concrete

examples of algorithms that work well in practice and less as a

reinvention of how planning is possible. In fact, state-of-the-art

AI algorithms, like any of the classical algorithms, can still be

described using the same three fundamental dimensions. What

is new is that these algorithms exploit neural networks and ad-

vances in deep learning to better select which nodes to expand

(dimension 2) (Silver et al., 2016, 2017b), make efficient use of

cached computation (dimension 3) (Hamrick et al., 2019), and

most recently, to learn an efficient internal model from experi-

ence (dimension 1) (Schrittwieser et al., 2020). It is yet unclear

whether the specific neural architectures used in these algo-

rithms have direct relevance for neuroscience (though some ex-

amples point in that direction, e.g., Banino et al. 2018; Wang

et al. 2018). Nevertheless, research on the neurobiology of plan-

ning could certainly take inspiration at a more abstract, algo-

rithmic level from these advances. Recent work on experience

replay has started doing just that (Cazé et al., 2018; Mattar and
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Daw, 2018; Igata et al., 2021), but a more systematic approach is

needed to take full advantage of new developments in AI

planning.

Ultimately, the usefulness of our taxonomy is measured by the

extent to which it clarifies the various ways in which planning can

be accomplished by any agent, be it artificial or biological. There-

fore, our hope is that this taxonomy will, in the future, catalyze the

generation of clear and testable experimental hypotheses, e.g.,

by providing a systematic framework for adopting advances in

AI to computational models of planning in the brain. A more im-

mediate benefit, however, is to reveal the main limitations in our

current understanding of planning in the brain. These limitations

stem from three main sources: (1) behavioral tasks and data

have, for the most part, been too simple to differentiate algo-

rithmic details; (2) the algorithmic motifs inferred so far have

been too specific to the tasks used; (3) neural data have so far

contributed surprisingly few constraints as to how these algo-

rithms might be actually implemented in the brain. Below, we

make concrete suggestions on how to overcome each of these

three limitations, highlighting some recent work pointing in these

directions.

Embracing task complexity
First, we suggest that richer behavioral paradigms are needed to

further narrow the space of candidate planning algorithms. While

existing experimental paradigms were successful in identifying a

set of motifs (truncation, pruning, etc.), those motifs can still arise

as components of a large number of distinct algorithms. To

achieve a higher level of precision, experimenters should care-

fully design tasks to be maximally sensitive to specific algo-

rithmic differences. As discussed previously, these tasks should,

at a minimum, require multiple steps of decisions. Specifically,

tasks should have enough complexity (e.g., stochastic and dy-

namic environments or sufficiently large decision trees) to differ-

entiate between different algorithms. A recent study represents a

step in this direction, studying human behavior in a two-player

deterministic game where players compete to create four-in-a-

row on a 4-by-9 board (van Opheusden et al., 2017). This

game, which resembles a complex version of tic-tac-toe, con-

tains upwards of 1017 possible states, making it substantially

more complex than most tasks previously used to study biolog-

ical planning. By comparing choices made by humans against

those made by many planning algorithms, it was possible to infer

that motifs, such as truncation and pruning are important to ac-

count for human behavior. However, the complexity of the game

further allowed the authors to test the ability of multiple specific

algorithms to explain human behavior. The authors proposed

that a specific candidate—‘‘lookahead best-first search’’ based

on a feature-based heuristic—matched human behavior better

than any other algorithm considered. Using sufficiently complex

behavioral paradigms, it might also be possible to contrast hu-

man behavior against state-of-the-art algorithms in AI, such as

those involving variants of MCTS (Silver et al., 2016, 2017b,

2018), and to discover the ways in which human behavior sur-

passes or falls short of AI performance.

While complex game-based paradigms have the potential to

distinguish between specific algorithms, they are often limited

to be used with humans and thus mostly non-invasive record-
ings. In addition, they leave open the question of how much

the results obtained with them (and in particular, the specific

planning algorithms they identify) generalize to other, more

ecologically relevant tasks. Thus, future investigations should

attempt to combine task complexity with ecological relevance

in both humans and other animals (Krakauer et al., 2017; Hunt

et al., 2021). In this regard, navigation could be an ideal testbed

in which rich and exquisitely well-controlled behavioral para-

digms exist (Tolman, 1948; O’Keefe and Nadel, 1978) in combi-

nation with established neural correlates (Moser et al., 2017;

Bellmund et al., 2018), and modern high-throughput recording

methods (Jun et al., 2017; Hong and Lieber, 2019). Although

deterministic internal models are sufficient for standard naviga-

tion tasks (with the walls of a maze being fixed), more recent par-

adigms allow the introduction of stochasticity and thus pave the

way to identifying a more general class of algorithms (Wood

et al., 2018; Duvelle et al., 2021). The link between navigational

signals in neural responses and planning has only recently

been studied systematically and thus offers new insights not

only into planning but also into the navigational systems of the

brain (Pfeiffer and Foster, 2013).

The advantage of using navigation-based paradigms for

investigating planning need not be limited to studying navigation

in physical spaces (Behrens et al., 2018). A number of studies

have now used behavioral paradigms directly modeled after

(simplified) navigation tasks but in which subjects navigated

more abstract cognitive spaces (Eichenbaum and Cohen,

2014; Constantinescu et al., 2016). These studies also revealed

that neural responses in the hippocampus and entorhinal cortex,

commonly studied in spatial navigation tasks, may also encode

‘‘locations’’ in these more abstract, cognitive spaces (Constanti-

nescu et al., 2016; Aronov et al., 2017; Whittington et al., 2020),

thereby implementing a bona fide state representation in the

formal sense of reinforcement learning (Figures 1A and 1B).

Thus, these results illustrate how the neural bases of more gen-

eral forms of planning can be studied. Indeed, recent results

have indicated offline planning in abstract state spaces similar

to that seen in physical spaces (Liu et al., 2021). However,

such abstract navigation paradigms have so far had relatively

minimal planning requirements, often using passive navigation

(in which subjects are exposed to a trajectory in the abstract

space rather than allowed to choose one) or simple state transi-

tion structures. Therefore, in line with our suggestion above, to

be able to distinguish between different planning algorithms,

future studies will need to challenge subjects with more complex

planning tasks in these abstract state spaces.

Motor control presents another highly ecological domain that

has long been studied and shown to engage sophisticated sto-

chastic internal models (McNamee and Wolpert, 2019). Recent

work has also started revealing neural correlates of motor plan-

ning (Churchland et al., 2006; Averbeck et al., 2002; Mushiake

et al., 2006). However, so far little attention has been given to

identifying specific algorithms. Planning in motor control poses

particularly strong constraints on the space of feasible algo-

rithms due to its inherently large state and action spaces (contin-

uous limb positions, joint angles, and muscle activations),

multiple sources of noises and delays, and strong time pres-

sures—making it a direction particularly ripe for investigating
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the neural bases of planning in a domain that remains chal-

lenging for even today’s AI algorithms (Arulkumaran et al.,

2017). Also important is the specification of how planning in

the space of motor commands relates to planning in the space

of abstract states, particularly since the two types of plans

appear to be represented in distinct brain regions (Mushiake

et al., 2006).

One particular challenge is to design tasks in which subjects

cannot rely on reflexive strategies. This creates a tension when

working with animals: sufficiently high performance typically re-

quires extensive training, which in turn can easily lead to habitual

behavior based on reflexive strategies (Akam et al., 2015). Trial-

by-trial changes in outcome-reward associations (e.g., by

devaluation; Balleine and Dickinson, 1998) or goals (e.g., in a

navigation-like setting; Mushiake et al., 2006) can promote plan-

ning-based strategies but still cannot exclude more sophisti-

cated reflexive strategies that use temporal abstraction (such

as the SR; Dayan, 1993; Russek et al., 2017). Ultimately, tasks

in which transition probabilities between states can change

(such as a short-cut opening; Wood et al., 2018; Duvelle et al.,

2021) will be necessary. Moreover, such changes will need to

occur repeatedly to allow the collection of sufficient amounts

of behavioral data from each subject. In turn, for the performance

to remain high in the face of a continually changing transition

structure, subjects need to be (pre-)trained, such that they ac-

quire more abstract knowledge about transitions that can be

generalized to novel states. Paradigms using navigational sche-

mata may be a good starting point for this (Tse et al., 2007).

Ultimately, with the advent of more sophisticated behavioral

paradigms, it also becomes increasingly imperative to maximize

the richness of the recorded behavioral data, beyond just regis-

tering final choices and reaction times, as in classical studies.

Modern high-throughput multimodal recordings and analysis

methods (Mathis et al., 2018) could involve the simultaneous

registering of VTE-like behavior, eye movements, pupil dilation,

stiffness, and more—all suggested to be linked to planning and

its component processes (Redish, 2016; Callaway et al., 2021;

Zénon, 2019; Franklin and Wolpert, 2011) but rarely studied in

a unified analysis framework.

Going beyond the taxonomy
Second, as we increase the richness of behavioral paradigms,

we may be faced with additional limitations: what if the algo-

rithms used by the brain are adapted to the specific task at

hand, thus varying from task to task? Can we ever hope to

consider all viable candidate algorithms? And what if the brain

uses fundamentally different algorithms than those used in AI?

These questions lead to another important direction for further

progress, which is to consider more expressive algorithms.

An approach that has been particularly fruitful is to define a

meta-algorithm that receives a task as an input and produces

as the output a planning algorithm that is appropriate for that

task—under some quality metric and resource constraints.

This approach can lead to different algorithms to different tasks

while maintaining the elegance and compactness of a single,

generative normative approach. The resulting algorithm can

then be interpreted in light of the taxonomy and, indeed,

compared across tasks. For instance, starting from the assump-
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tion that people make rational use of their limited cognitive re-

sources, one can derive rational models and algorithms, an

approach known as resource-rational (Lieder and Griffiths,

2019). Applying this framework to planning, recent studies

have found that human choices are better described by a

resource-rational planning strategy than by more conventional

algorithms (such as those from Figure 2), and moreover, the de-

tails of the planning strategies used are adapted to the structure

of the task at hand (Callaway et al., 2018; Correa et al., 2020). A

similar normative approach has also been helpful in explaining

neural data associated with planning, where the content and

directionality of hippocampal replay were shown to arise natu-

rally from optimal ordering of Dyna updates. Such optimal

ordering of planning operations reproduces various physiolog-

ical observations, such as the existence of both forward and

reverse replay sequences, the greater representation of rewards

and the agent’s location, and different effects of experience

(Mattar and Daw, 2018).

Another systematic approach for generating possible planning

algorithms involves re-framing planning as a problem of probabi-

listic inference—computing a posterior distribution over actions,

conditioned on reaching the goal state or maximizing reward (At-

tias, 2003; Toussaint and Storkey, 2006). This framework, called

planning-as-inference, leads to a parsimonious explanation for

numerous behavioral and neural findings related to goal-directed

behavior and connects planning to other cognitive systems in

sensory and motor domains, already understood within a prob-

abilistic framework (Botvinick and Toussaint, 2012; Solway and

Botvinick, 2012). Interestingly, classic planning algorithms have

been ‘‘rediscovered’’ as the solution to an inference problem

(e.g., policy iteration can be understood as computing optimal

policies via expectation maximization; Toussaint and Storkey,

2006). This raises the intriguing possibility that novel planning al-

gorithms might also be discovered using the planning-as-infer-

ence framework, particularly for problems where exhaustive

planning (corresponding to exact inference) is too costly. For

example, methods for approximate inference based on sampling

might give rise to rational approximations to the exact planning

solution, with the additional advantage of having potentially plau-

sible neural instantiations (Fiser et al., 2010; Echeveste et al.,

2020). Therefore, we suggest that in the future, either of these

approaches (resource-rational planning or planning-as-infer-

ence) could be used to populate the space of planning algo-

rithms in a systematic way, going beyond those that happen to

be included in today’s AI textbooks (Figure 2).

In addition to principled approaches for generating planning

algorithms, the very definitions of actions and states can also

be reconsidered. We have already discussed the learning of ac-

tion chunks (the core idea underlying hierarchical reinforcement

learning; Barto and Mahadevan, 2003), but more efficient repre-

sentations of the state space can also be learned (Akam et al.,

2015; McNamee et al., 2016). While learned latent states are usu-

ally specific to a certain context (and thus, by definition, less

generalizable), they can also be optimized for a whole set of

interrelated tasks (Wang et al., 2018). Good abstractions of the

state space can also be identified by combining states that are

equivalent in terms of both the transition and reward functions,

a process that leverages the SR for state-space compression
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(Lehnert et al., 2020). Therefore, reconsidering the building

blocks of a planning agent (Figure 1B) is a fundamental yet often

overlooked step, as the advantages and computations of each

algorithm—and in turn their neural instantiations—depend

directly on how their elements are defined.

In this paper, we have intentionally omitted a discussion of

how the internal model might be learned. This is because once

the internal model used by the agent is known, the process

that gave rise to that model (i.e., learning) is no longer relevant

to the planning algorithms used. This rationale, however, ob-

scures the inherent difficulty in inferring the agent’s internal

model. In many experimental approaches, the agent will be

required to learn the model (or parts thereof) during the experi-

ment itself. This results in uncertainty, both from the agent’s

point of view (i.e., epistemic uncertainty about action outcomes)

and from the scientist’s point of view (i.e., epistemic uncertainty

about the agent’s learned internal model). Incorrect assumptions

about the agent’s internal model can, in turn, masquerade as

algorithmic processes, as different algorithms using different in-

ternal models may produce identical behaviors (see our discus-

sion on inferring the internal model type). One way to circumvent

this issue is to probe subjects for the internal model used with an

orthogonal task, e.g., an outcome prediction task. Alternatively,

one can jointly infer the internal model and the parameters of the

behavioral model (Houlsby et al., 2013; Wu et al., 2020). More

broadly, considering the process by which the model is learned

can have important consequences for the identification of the

planning algorithms (Gl€ascher et al., 2010; Behrens et al., 2018).

More insights with neural data
Third, as the very definition of a planning algorithm is revised, so

are the ways of interpreting the relevant data. Here, again, we

propose that behavioral data alone will not suffice, since it reveals

little more than the final result of the planning process. Thus, our

final proposal for further progress is that the richer behavioral par-

adigms and analysis methods proposed above should be

accompanied by concurrent neural recordings in brain areas of

relevance. Given the relatively straightforward mapping between

states and place cells (Eichenbaum, 2017), the hippocampus can

be used as a window into planning, ruling algorithms in and out

based on how well they predict the activation of remote states.

However, high-quality neural data from other relevant areas

such as the prefrontal cortex and basal ganglia should also be

used. Indeed, despite the uncontested causal involvement of

these regions in planning behavior resulting from lesion work

(Duncan et al., 1996; Unterrainer and Owen, 2006), little is known

about how planning algorithms are implemented in their dy-

namics and, particularly, how they interact with one another

and with the hippocampus. It is, of course, essential to acknowl-

edge that different systems in the brain may be optimized for

different computations (e.g., a common view is that the hippo-

campus might be specialized for spatial planning). Nonetheless,

a fuller picture of how planning algorithms are implemented by

the brain will only be achieved by considering simultaneously

the involvement of the complete planning network (Wunderlich

et al., 2012; Dolan and Dayan, 2013; Patai and Spiers, 2021),

and how the dynamics of their activity ultimately implement the

computations underlying planning.
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