Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Publisher
Elsevier BVType
Journal articleTitle / Series / Name
NeuronPublication Volume
110Publication Issue
6Date
2022
Metadata
Show full item recordAbstract
Recent breakthroughs in artificial intelligence (AI) have enabled machines to plan in tasks previously thought to be uniquely human. Meanwhile, the planning algorithms implemented by the brain itself remain largely unknown. Here, we review neural and behavioral data in sequential decision-making tasks that elucidate the ways in which the brain does—and does not—plan. To systematically review available biological data, we create a taxonomy of planning algorithms by summarizing the relevant design choices for such algorithms in AI. Across species, recording techniques, and task paradigms, we find converging evidence that the brain represents future states consistent with a class of planning algorithms within our taxonomy—focused, depth-limited, and serial. However, we argue that current data are insufficient for addressing more detailed algorithmic questions. We propose a new approach leveraging AI advances to drive experiments that can adjudicate between competing candidate algorithms.identifiers
10.1016/j.neuron.2021.12.018ae974a485f413a2113503eed53cd6c53
10.1016/j.neuron.2021.12.018
Scopus Count
Collections