Adaptive erasure of spurious sequences in sensory cortical circuits
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Publisher
Elsevier BVType
Journal articleTitle / Series / Name
NeuronPublication Volume
110Publication Issue
11Date
2022
Metadata
Show full item recordAbstract
Sequential activity reflecting previously experienced temporal sequences is considered a hallmark of learning across cortical areas. However, it is unknown how cortical circuits avoid the converse problem: producing spurious sequences that are not reflecting sequences in their inputs. We develop methods to quantify and study sequentiality in neural responses. We show that recurrent circuit responses generally include spurious sequences, which are specifically prevented in circuits that obey two widely known features of cortical microcircuit organization: Dale’s law and Hebbian connectivity. In particular, spike-timing-dependent plasticity in excitation-inhibition networks leads to an adaptive erasure of spurious sequences. We tested our theory in multielectrode recordings from the visual cortex of awake ferrets. Although responses to natural stimuli were largely non-sequential, responses to artificial stimuli initially included spurious sequences, which diminished over extended exposure. These results reveal an unexpected role for Hebbian experience-dependent plasticity and Dale’s law in sensory cortical circuits.identifiers
10.1016/j.neuron.2022.03.006ae974a485f413a2113503eed53cd6c53
10.1016/j.neuron.2022.03.006
Scopus Count
Collections